Bakhytzhan Lesbayev | Physics | Research Excellence Award

Prof. Bakhytzhan Lesbayev | Physics | Research Excellence Award

Head of the Laboratory | Al-Farabi Kazakh National University | Kazakhstan

Prof. Bakhytzhan Lesbayev is a prominent researcher in nanotechnology and nanocarbon materials, specializing in flame synthesis, biomass-derived porous carbon, graphene, graphene oxide, and carbon nanotube–based functional materials. His research interests include electrochemical energy storage, supercapacitors, hydrogen storage, catalytic combustion, VOC adsorption, petrochemical processes, and sustainable nanomaterials for environmental and energy applications. He demonstrates strong research skills in combustion-assisted nanomaterial synthesis, carbon surface engineering, electrochemical and adsorption characterization, and performance optimization of carbon-based electrodes. Prof. Lesbayev has received academic recognition through impactful publications, international collaborations, and contributions to high-quality peer-reviewed journals, representing his awards and honors through scholarly excellence. According to Google Scholar, his research has accumulated 608 total citations, with an h-index of 13  and an i10-index of 21. In conclusion, his work significantly advances scalable and sustainable nanocarbon technologies for energy, environmental, and industrial innovation.

 

Citation Metrics (Google Scholar)

608
450
300
150
0

Citations

608

i10-index

21

h-index

13

Citations

i10-index

h-index

View Google Scholar Profile View Scopus Profile View ORCID Profile

Featured Publications

Mohamed Issa | Physics | Young Scientist Award

Mr. Mohamed Issa | Physics | Young Scientist Award

Student | Al-Azhar University | Egypt

Mr. Mohammed Ibrahim Al-Saeed Issa is an independent researcher specializing in fundamental theoretical physics and cosmology, with a central focus on developing a comprehensive Theory of Everything that unifies universal laws, consciousness, space time, and cosmic renewal mechanisms. His research interests include modifications to relativity, consciousness-driven models of the universe, self-renewing cosmic systems, and the philosophical foundations underlying physical laws. He possesses strong research skills in theoretical and conceptual modeling, analytical reasoning, interdisciplinary synthesis across physics and metaphysics, and the formulation of original universal frameworks. His 2025 scholarly works—How the Universe Speaks through Consciousness, Modification of Relativity, Theory of Everything and the Law of the Universe, and How Does the Universe Renew Itself?—demonstrate innovative and integrative thinking. His awards and honors are emerging as his ideas gain recognition within global research communities. In conclusion, Mr. Issa’s work represents an ambitious effort to advance unified cosmological understanding through original, theory-driven exploration beyond conventional scientific models.

Profiles

View Google Scholar   View ORCID

Featured Publications

 

Andrey Stepanov | Physics | Research Excellence Award

Prof. Andrey Stepanov | Physics | Research Excellence Award

Leading Researcher | Kazan E. K. Zavoisky Physical-Technical Institute | Russia

Prof. Andrey Stepanov is a highly accomplished researcher recognized for his impactful contributions to materials science, solid-state physics, and thin-film nanotechnology, with a strong emphasis on ion implantation, nanoporous semiconductors, optical coatings, and surface modification of germanium and silicon materials. His research interests focus on thin-film coatings, nanoporous germanium structures, ion–solid interactions, optical and antireflective materials, light–matter interaction, and advanced surface engineering, supported by strong research skills in experimental nanofabrication, ion beam technologies, spectroscopy, surface characterization, and applied physics modeling. His scholarly excellence and sustained scientific impact are reflected through Scopus metrics of 5,520 citations from 3,641 citing documents, 294 published documents, and an h-index of 41, demonstrating global recognition and long-term research influence. Prof. Stepanov’s work has earned significant professional recognition through high-impact journal publications and sustained citation performance, positioning him as a leading authority in advanced functional materials research.

Citation Metrics (Scopus)

5520
4000
2000
1000
0

Citations

5,520

Documents

294

h-index

41

Citations

Documents

h-index

 Featured Publications


Leakage radiation microscopy of surface plasmon polaritons

– Materials Science and Engineering B, 2008 (Citations: 352)


Dielectric stripes on gold as surface plasmon waveguides

– Applied Physics Letters, 2006 (Citations: 337)


Dielectric optical elements for surface plasmons

– Optics Letters, 2005 (Citations: 243)


The role of microorganisms in the ecological functions of soils

– Eurasian Soil Science, 2015 (Citations: 215)

 

Vasileios Lembessis | Physics | Best Researcher Award

Prof. Vasileios Lembessis | Physics | Best Researcher Award

Professor | King Saud University | Saudi Arabia

Dr. Vassilis E. Lembessis is a leading physicist internationally recognized for his influential contributions to quantum optics, laser cooling and trapping, twisted light beams, and plasmonics. His research primarily investigates the interaction between atoms and structured light fields, exploring how the angular momentum, phase, and topology of light influence atomic dynamics and quantum behavior. With an extensive citation record exceeding 1,700 citations, an h-index of 18, and an i10-index of 34, his scientific work has profoundly shaped the theoretical and experimental frontiers of modern optical physics.A central theme of Dr. Lembessis’s research is the manipulation of ultracold atoms and quantum gases using complex optical fields. His highly cited papers, such as “Optical Ferris Wheel for Ultracold Atoms” and “Atoms in Complex Twisted Light,” have introduced groundbreaking models for controlling atomic motion through optical vortices and Laguerre–Gaussian beams. These studies have provided fundamental insights into optical angular momentum transfer, light-induced forces, and coherent control in atomic systems.Dr. Lembessis has also advanced the understanding of surface plasmon optical vortices, spin–orbit coupling in light beams, and light-induced torque in Bose–Einstein condensates, bridging the gap between classical electromagnetism and quantum phenomena. His research reveals how tailored light structures can generate new forms of atomic trapping, guiding, and rotation—paving the way for emerging technologies in quantum manipulation, photonic nanodevices, and precision measurement.His collaborative work with prominent researchers across global institutions continues to deepen the theoretical framework of light–matter interactions, addressing phenomena such as enhanced quadrupole effects, atomic vortex generation, and plasmonic field singularities. These investigations have implications not only for fundamental quantum theory but also for practical advancements in quantum computing, optical communications, and nanophotonics.Through his innovative and interdisciplinary approach, Dr. Vassilis E. Lembessis has become a prominent figure in contemporary physics, consistently expanding the boundaries of light–matter science and inspiring future exploration into quantum technologies and structured photonic systems that define the next generation of optical and quantum research.

Profiles: ORCID | Google Scholar

Featured Publications

  1. Jaouadi, A., Lyras, A., & Lembessis, V. E. (2025). Towards a Twisted Atom Laser: Cold Atoms Released from Helical Optical Tube Potentials. Photonics, 12(10), 999.

  2. Lembessis, V. E., Yuan, J., Köksal, K., & Babiker, M. (2025). Time dilation effects in micron-size rotating optical Ferris-wheel traps. Physical Review A.

  3. Babiker, M., Köksal, K., Lembessis, V. E., & Yuan, J. (2024). Intrinsic angular momentum, spin and helicity of higher-order Poincaré modes. Journal of Optics.

  4. Lembessis, V. E., & Andrews, D. L. (2024). Forces in the Interaction of Light with Matter. Applied Sciences.

  5. Alsaawi, N., Lembessis, V. E., Lyras, A., Babiker, M., & Yuan, J. (2024). Helicity of magnetic fields associated with non-relativistic electron vortex beams. Journal of Physics A: Mathematical and Theoretical.

Here are the APA-formatted references for the listed publications by Vassilis E. Lembessis and co-authors. Note: I couldn’t locate reliable citation counts or a verified h-index for each article at this time, so those fields are left blank.

 

Teng Zhang | Physics | Best Researcher Award

Dr. Teng Zhang | Physics | Best Researcher Award

Senior Experimentalist | Hubei University | China

Dr. Teng Zhang is a prominent researcher at Hubei University for Nationalities in Enshi, China, specializing in advanced materials science and optoelectronic devices. His academic journey includes a Ph.D. in Materials Science, with a focus on semiconductor thin films and functional nanomaterials. Professionally, he serves as a faculty member in the Department of Physics, where he leads research initiatives on wide-bandgap semiconductors, two-dimensional materials, and multifunctional heterostructures.Dr. Zhang’s research interests encompass the growth mechanisms, structural properties, and device applications of materials such as BeMgZnO quaternary alloys, VO₂-based composites, and ZnIn₂S₄ nanoflakes. His work aims to enhance the performance of photodetectors, gas sensors, and energy storage devices through innovative material design and fabrication techniques. He employs advanced methods like pulsed laser deposition, electron-beam evaporation, and density functional theory simulations to investigate and optimize material properties.His research skills include thin-film deposition, structural and optical characterization, device fabrication, and computational modeling. Dr. Zhang has contributed to numerous peer-reviewed publications, with over 250 citations, reflecting the impact of his work in the field. He has collaborated with various researchers, fostering interdisciplinary approaches to material science.While specific awards and honors are not detailed in the available information, Dr. Zhang’s consistent publication record and active participation in scientific discourse underscore his recognition within the academic community.In conclusion, Dr. Teng Zhang’s multifaceted expertise and dedication to advancing material science position him as a valuable contributor to the development of next-generation electronic and optoelectronic technologies.

Profiles: Scopus | ORCID

Featured Publications

Zhang, T., Zhang, Y., Ren, D., Zhu, Y., & Yi, J. (2026). Polar and non-polar growth of BeMgZnO quaternary alloy thin films for deep ultraviolet photodetectors. Materials Science in Semiconductor Processing, 126, 110152.

Zhang, T., Zhang, Y., Ren, D., Zhu, Y., & Yi, J. (2026). Polar and non-polar growth of BeMgZnO quaternary alloy thin films for deep ultraviolet photodetectors. Materials Science in Semiconductor Processing, 126, 110152.