MD Shouquat Hossain | Electrical and Electronics Engineering

Assoc. Prof. Dr. MD Shouquat Hossain | Electrical and Electronics Engineering

Associate Professor | International University of Business Agriculture and Technology | Bangladesh

Assoc. Prof. Dr. MD Shouquat Hossain is a recognized researcher in renewable energy engineering and sustainable energy systems, with a strong focus on applied solutions for energy efficiency and climate resilience. His research interests include solar photovoltaic and photovoltaic–thermal systems, hybrid renewable energy systems, energy modeling and optimization, low-cost energy monitoring technologies, phase change materials, and water–energy–carbon nexus analysis in energy-stressed regions. He possesses advanced research skills in system design, experimental performance evaluation, techno-economic and environmental analysis, energy data acquisition, and sustainability assessment for real-world applications. His work contributes to improving renewable energy deployment, affordability, and operational reliability, particularly in developing and resource-constrained contexts. Dr. Hossain has received professional recognition through high-impact publications, open-access research dissemination, and consistent citation performance, reflecting his influence in energy and sustainability research. According to Scopus, he has published 53 documents, received 6,023 citations, and achieved an h-index of 26, underscoring his sustained academic impact, leadership, and commitment to advancing clean energy technologies and sustainable development.

 

Citation Metrics (Scopus)

6023
4500
3000
1500
0

Citations

6,023

Documents

53

h-index

26

Citations

Documents

h-index

View Scopus Profile View Google Scholar Profile View ORCID Profile

Featured Publications

Jinping Luo | Electrical and Electronics Engineering | Excellence in Research Award

Assoc. Prof. Dr. Jinping Luo | Electrical and Electronics Engineering | Excellence in Research Award

Jinping Luo | Aerospace Information Research Institute, Chinese Academy of Sciences | China

Luo Jinping is an accomplished researcher at the Aerospace Information Research Institute, Beijing, recognized for his impactful contributions at the intersection of neuroscience, biosensing technologies, and advanced microelectrode systems. With 1,748 citations, 91 publications, and an h-index of 20 in Scopus, his work demonstrates strong scientific influence and consistent research productivity. His research interests span aptamer-based biosensors, implantable and flexible microelectrode arrays, neural information decoding, neuromodulation, brain-on-chip systems, and neuroengineering for cognitive restoration. He is skilled in micro/nano-fabrication, biocompatible material integration, neural signal analysis, in vitro neural network modeling, and biosensor development for neurological and biomedical applications. Luo has contributed to advancing technologies for dopamine sensing, sleep-wake dynamics, Alzheimer’s disease models, and deep-brain interface stability, reflecting both innovation and translational potential. His achievements have earned him recognition within the scientific community, including multiple collaborations, extensive citations, and inclusion in high-impact journals such as Nature Communications, Biosensors and Bioelectronics, and Microsystems & Nanoengineering. Overall, Luo Jinping stands as a forward-driven researcher whose multidisciplinary expertise continues to shape the future of neurotechnology and biosensing, with a growing global impact supported by strong publication metrics and ongoing research excellence.

Profiles: Scopus

Featured Publications

1. Luo, J., Liu, J., Lu, Z., Song, Y., Xu, Z., Wang, M., Jia, Q., Lv, S., Wang, Y., & Cai, X. (2025). A movable microfiber establishes a new paradigm for implantable bioelectronics. Science Bulletin.

2. Hua, S., Liu, Y., Luo, J. , Li, S., Jiang, L., Wu, P., Sun, S., Shang, L., Lu, C., Zhang, K., Liu, J., Wang, M., Shi, H., & Cai, X.* (2025). Microelectrode arrays cultured with in vitro neural networks for motion control tasks: Encoding and decoding progress and advances. Microsystems & Nanoengineering.

3. Jia, Q., Xu, Z., Wang, Y., Duan, Y., Liu, Y., Shan, J., Ma, J., Li, Q., Luo, J., Luo, Y., Wang, Y., Duan, S., Yu, Y., & Wang, M., Cai, X. (2025). Targeted-modified multitransm microelectrode arrays simultaneously track dopamine and cellular electrophysiology in nucleus accumbens during sleep–wake transitions. Research, 8. https://doi.org/10.34133/research.0944

4. Shan, J., Xu, W., Luo, J., Xu, Z., Liu, Y., Jia, Q., Lv, S., Duan, Y., Jiao, P., Li, Q., Luo, Y., Ma, Y., Zhang, X., Song, Y., Mi, W., & Cai, X.* (2025). Neuromodulation in the prelimbic cortex of sleep-deprived rats via a bidirectional microelectrode array modified with PtNPs/sorbitol-doped PEDOT:PSS. ACS Applied Electronic Materials. https://doi.org/10.1021/acsaelm.5c01393

5. Liu, Y., Jia, Q., Miao, J., Jiang, L., Shan, J., Wang, Y., Lv, S., Li, Q., Liu, Y., Jiao, P., Song, Y., Luo, J., & Cai, X.* (2025). Ultra-biocompatible PEDOT:DSS-modified dual-mode bi-directional microelectrode arrays reveal phase-locking dynamics across sleep–wake. Biosensors and Bioelectronics, 290, Article 117973. https://doi.org/10.1016/j.bios.2025.117973

Teng Zhang | Physics | Best Researcher Award

Dr. Teng Zhang | Physics | Best Researcher Award

Senior Experimentalist | Hubei University | China

Dr. Teng Zhang is a prominent researcher at Hubei University for Nationalities in Enshi, China, specializing in advanced materials science and optoelectronic devices. His academic journey includes a Ph.D. in Materials Science, with a focus on semiconductor thin films and functional nanomaterials. Professionally, he serves as a faculty member in the Department of Physics, where he leads research initiatives on wide-bandgap semiconductors, two-dimensional materials, and multifunctional heterostructures.Dr. Zhang’s research interests encompass the growth mechanisms, structural properties, and device applications of materials such as BeMgZnO quaternary alloys, VO₂-based composites, and ZnIn₂S₄ nanoflakes. His work aims to enhance the performance of photodetectors, gas sensors, and energy storage devices through innovative material design and fabrication techniques. He employs advanced methods like pulsed laser deposition, electron-beam evaporation, and density functional theory simulations to investigate and optimize material properties.His research skills include thin-film deposition, structural and optical characterization, device fabrication, and computational modeling. Dr. Zhang has contributed to numerous peer-reviewed publications, with over 250 citations, reflecting the impact of his work in the field. He has collaborated with various researchers, fostering interdisciplinary approaches to material science.While specific awards and honors are not detailed in the available information, Dr. Zhang’s consistent publication record and active participation in scientific discourse underscore his recognition within the academic community.In conclusion, Dr. Teng Zhang’s multifaceted expertise and dedication to advancing material science position him as a valuable contributor to the development of next-generation electronic and optoelectronic technologies.

Profiles: Scopus | ORCID

Featured Publications

Zhang, T., Zhang, Y., Ren, D., Zhu, Y., & Yi, J. (2026). Polar and non-polar growth of BeMgZnO quaternary alloy thin films for deep ultraviolet photodetectors. Materials Science in Semiconductor Processing, 126, 110152.

Zhang, T., Zhang, Y., Ren, D., Zhu, Y., & Yi, J. (2026). Polar and non-polar growth of BeMgZnO quaternary alloy thin films for deep ultraviolet photodetectors. Materials Science in Semiconductor Processing, 126, 110152.