Prof. Vasileios Lembessis | Physics | Best Researcher Award

Professor | King Saud University | Saudi Arabia

Dr. Vassilis E. Lembessis is a leading physicist internationally recognized for his influential contributions to quantum optics, laser cooling and trapping, twisted light beams, and plasmonics. His research primarily investigates the interaction between atoms and structured light fields, exploring how the angular momentum, phase, and topology of light influence atomic dynamics and quantum behavior. With an extensive citation record exceeding 1,700 citations, an h-index of 18, and an i10-index of 34, his scientific work has profoundly shaped the theoretical and experimental frontiers of modern optical physics.A central theme of Dr. Lembessis’s research is the manipulation of ultracold atoms and quantum gases using complex optical fields. His highly cited papers, such as “Optical Ferris Wheel for Ultracold Atoms” and “Atoms in Complex Twisted Light,” have introduced groundbreaking models for controlling atomic motion through optical vortices and Laguerre–Gaussian beams. These studies have provided fundamental insights into optical angular momentum transfer, light-induced forces, and coherent control in atomic systems.Dr. Lembessis has also advanced the understanding of surface plasmon optical vortices, spin–orbit coupling in light beams, and light-induced torque in Bose–Einstein condensates, bridging the gap between classical electromagnetism and quantum phenomena. His research reveals how tailored light structures can generate new forms of atomic trapping, guiding, and rotation—paving the way for emerging technologies in quantum manipulation, photonic nanodevices, and precision measurement.His collaborative work with prominent researchers across global institutions continues to deepen the theoretical framework of light–matter interactions, addressing phenomena such as enhanced quadrupole effects, atomic vortex generation, and plasmonic field singularities. These investigations have implications not only for fundamental quantum theory but also for practical advancements in quantum computing, optical communications, and nanophotonics.Through his innovative and interdisciplinary approach, Dr. Vassilis E. Lembessis has become a prominent figure in contemporary physics, consistently expanding the boundaries of light–matter science and inspiring future exploration into quantum technologies and structured photonic systems that define the next generation of optical and quantum research.

Profiles: ORCID | Google Scholar

Featured Publications

  1. Jaouadi, A., Lyras, A., & Lembessis, V. E. (2025). Towards a Twisted Atom Laser: Cold Atoms Released from Helical Optical Tube Potentials. Photonics, 12(10), 999.

  2. Lembessis, V. E., Yuan, J., Köksal, K., & Babiker, M. (2025). Time dilation effects in micron-size rotating optical Ferris-wheel traps. Physical Review A.

  3. Babiker, M., Köksal, K., Lembessis, V. E., & Yuan, J. (2024). Intrinsic angular momentum, spin and helicity of higher-order Poincaré modes. Journal of Optics.

  4. Lembessis, V. E., & Andrews, D. L. (2024). Forces in the Interaction of Light with Matter. Applied Sciences.

  5. Alsaawi, N., Lembessis, V. E., Lyras, A., Babiker, M., & Yuan, J. (2024). Helicity of magnetic fields associated with non-relativistic electron vortex beams. Journal of Physics A: Mathematical and Theoretical.

Here are the APA-formatted references for the listed publications by Vassilis E. Lembessis and co-authors. Note: I couldn’t locate reliable citation counts or a verified h-index for each article at this time, so those fields are left blank.

 

Vasileios Lembessis | Physics | Best Researcher Award

You May Also Like