Darío Fernando Yépez Ponce | Robotics and Automation | Editorial Board Member

Prof. Darío Fernando Yépez Ponce | Robotics and Automation | Editorial Board Member

Docente Investigador | Instituto Superior Universitario Central Técnico | Ecuador

Darío Fernando Yépez Ponce is a mechatronics and automation engineer and academic from Ecuador, currently working as a faculty member in electronics at Instituto Superior Universitario Central Técnico in Quito (since October 2024). His background includes an engineering degree in mechatronics (2016) from Universidad Técnica del Norte, plus ongoing postgraduate studies (Master’s in Electronics and Automation) at Universidad Politécnica Salesiana. Over the years he has served as a lecturer in various institutions across Ecuador teaching mechatronics, electronics, and automation engineering.Professor Yépez’s research interest concentrates on robotics, control systems (notably PID control), autonomous systems (including unmanned ground vehicles), microgrids and power electronics, IoT-based automation, and applications of mechatronics in agriculture and automation systems. His work shows a recurrent focus on optimization algorithms, control strategies, mobile robotics, and intelligent systems for automation and smart farming. Notable recent outputs include a 2025 journal article titled “Route Optimization for UGVs: A Systematic Analysis of Applications, Algorithms and Challenges,” which analyses algorithms for path planning in autonomous ground vehicles. In terms of research productivity and impact: according to his publicly visible profile, he has a Google Scholar citation count of about 113 citations.Publications span journal articles, conference papers, and book chapters. For example, his 2025 UGV-optimization article is indexed in major journals. The breadth of his work — from control system tuning (e.g., PID controllers via hybrid optimization strategies) to IoT-based systems and robotics — reflects a versatile research skill set in automation, control, robotics, power electronics, and applied mechatronics.Although I could not find a definitive public value for his Scopus h-index or total Scopus-document count (his Scopus Author ID is 57220807265), the combination of his journal-indexed articles, book chapters and recent contributions suggests a growing research profile, particularly in robotics, automation, and sustainable/renewable-power applications.In conclusion, Darío Fernando Yépez Ponce represents a dynamic and interdisciplinary researcher bridging mechatronics, control systems, automation, and robotics — with an orientation toward real-world applications such as autonomous vehicles and smart farming. His emerging publication record and international-indexed works position him as an active contributor in automation and mechatronics research circles.

Profiles: Scopus | ORCID | Google Scholar

Featured Publications

  1. Yépez-Ponce, D. F., Salcedo, J. V., Rosero-Montalvo, P. D., & Sanchis, J. (2023). Mobile robotics in smart farming: Current trends and applications. Frontiers in Artificial Intelligence, 6, 1213330.
    Citations: 99

  2. Ponce, H. M. Y., & Yépez-Ponce, D. F. (2020). Control de modo deslizante para microrredes: Una revisión. Investigación Tecnológica IST Central Técnico, 2(1), 14–14.
    Citations: 5

  3. Yépez Ponce, D. F., & Montalvo López, W. M. (2021). Development of a hybrid optimization strategy based on a bacterial foraging algorithm (BFA) and a particle swarming algorithm (PSO) to tune the PID controller of a ball and plate system. In XV Multidisciplinary International Congress on Science and Technology (pp. 15–29).
    Citations: 3

  4. Yépez-Ponce, D. F., Montalvo, W., Guamán-Gavilanes, X. A., & Echeverría-Cadena, M. D. (2025). Route optimization for UGVs: A systematic analysis of applications, algorithms and challenges. Applied Sciences, 15(12), 6477.
    Citations: 2

  5. Yépez Ponce, H. M., Yépez Ponce, D. F., Proaño Lapuerta, E. A., Mosquera Bone, C. E., & Alarcón Angulo, M. L. (2022). Open-source platform for development of taximeters: Adjustment software. In International Conference on Applied Technologies (pp. 532–544).
    Citations: 1

 

Solomon Legesse | Computer Science | Editorial Board Member

Assoc Prof Dr. Solomon Legesse | Computer Science | Editorial Board Member

Postgraduate Coordinator | Bahir Dar University | Ethiopia

Dr. Solomon Addisu is a leading researcher in climate change, environmental systems, soil science, and sustainable land-use management, with a strong focus on Ethiopia and the broader East African region. His extensive body of work advances understanding of how climate variability, land degradation, agricultural systems, and natural resource pressures intersect to shape environmental sustainability and community resilience. Through more than a decade of scientific contributions, he has established himself as a significant voice in climate adaptation research, soil enhancement technologies, and watershed management.A central pillar of his research explores biochar technology, soil amendments, and nutrient cycling. His studies on water hyacinth-based biochar, phosphorus biofertilizers from animal bone, and the physicochemical transformations of biomass during pyrolysis offer pioneering insights into regenerative agriculture and soil rehabilitation. These works demonstrate the potential of low-cost, sustainable inputs to improve soil fertility, reduce acidification, enhance nutrient retention, and boost crop productivity—especially in degraded highland agroecosystems.Dr. Addisu is also widely recognized for his contributions to climate modeling, hydrological forecasting, and drought analysis. His research using CMIP6 scenarios, rainfall trend evaluations, and meteorological drought assessments provides vital actionable guidance for climate adaptation planning in vulnerable regions. He applies advanced geospatial tools, remote sensing, and machine learning to analyze land-use dynamics, watershed degradation, flood risks, and invasive species monitoring—most notably in the Lake Tana basin.Another core area of his work addresses environmental pollution, urban heat island effects, charcoal production impacts, and sustainable waste management solutions. His studies integrate socioeconomic, ecological, and policy perspectives, offering comprehensive frameworks for environmental governance, community-based adaptation, and nature-based solutions.Additionally, Dr. Addisu’s extensive research on climate change perceptions, rural livelihood vulnerabilities, agricultural resilience, and livestock diversification is widely cited in the fields of sustainable development and rural poverty reduction. His work equips policymakers and communities with evidence-based strategies to build resilience in the face of increasing climate stressors.Overall, Dr. Solomon Addisu’s research portfolio bridges environmental science, climate adaptation, soil restoration, and sustainable natural resource management. His contributions significantly strengthen scientific understanding and provide practical pathways toward ecological stability, food security, and climate-resilient development across Ethiopia and East Africa.

Profiles: ORCID

Featured Publications

  1. Kohira, Y., Fentie, D., Lewoyehu, M., Wutisirirattanachai, T., Gezahegn, A., Ahmed, M., Akizuki, S., Addisu, S., & Sato, S. (2025). The sustainable management of nitrogen fertilizers for environmental impact mitigation by biochar applications to soils: A review from the past decade. Environments.

  2. Fentie, D., Mihretie, F. A., Kohira, Y., Addisu Legesse, S., Lewoyehu, M., Wutisirirattanachai, T., & Sato, S. (2025). Optimizing cropping systems using biochar for wheat production across contrasting seasons in Ethiopian highland agroecology. Agronomy.

  3. Gezahegn, A., Selassie, Y. G., Agegnehu, G., Addisu, S., Mihretie, F. A., Kohira, Y., & Sato, S. (2025). Pyrolysis temperature changes the physicochemical characteristics of water hyacinth-based biochar as a potential soil amendment. Biomass Conversion and Biorefinery.

  4. Mekonnen, G. T., Berlie, A. B., Wubie, M. A., Legesse, S. A., & Cameselle, C. (2025). Surface urban heat island intensity and urban utility consumption: Impact analysis and projections. The Scientific World Journal.

  5. Addisu, S., Aniley, E., Gashaw, T., Kelemu, S., & Demessie, S. F. (2024). Evaluating the performances of gridded satellite products in simulating the rainfall characteristics of Abay Basin, Ethiopia. Sustainable Environment.

The nominee’s contributions in computer science advance intelligent systems that enhance automation, analytics, and digital decision-making across industries. Their innovative research accelerates global technological transformation, strengthens digital infrastructures, and drives smarter, more efficient solutions for society, businesses, and future technological innovation.

Keun Chang Kwak | Robotics and Automation | Best Researcher Award

Prof. Keun Chang Kwak | Robotics and Automation | Best Researcher Award

Professor | Chosun University | South Korea

Professor Keun-Chang Kwak is a distinguished researcher in the fields of computational intelligence, biometrics, and robotic vision systems, with extensive expertise in granular and neuro-fuzzy modeling, face and speaker recognition, knowledge extraction, behavior recognition, and auditory signal processing. He earned his Ph.D. in Electrical Engineering from Chungbuk National University, Korea, in 2002, following an MS in 1998 and a BS in 1996 from the same institution. Over his career, Prof. Kwak has held several prominent positions, including Professor at Chosun University, Korea (2007–present), Visiting Professor at California State University Fullerton, USA (2014–2015), Senior Researcher at the Intelligent Robot Research Division, Electronics and Telecommunications Research Institute (ETRI), Korea (2005–2007), and Postdoctoral Fellowships at the University of Alberta, Canada (2003–2005) and Chungbuk National University, Korea (2002–2003). He has also served as Project Manager of the AI Convergence University Project Division (2021–present) and Vice Director of the National Center of Excellence in Software at Chosun University (2018–2020), leading numerous national and international research initiatives. His research interests include computational intelligence, deep learning, speech emotion recognition, ECG-based biometrics, human-robot interaction, and knowledge extraction using fuzzy clustering. Prof. Kwak’s prolific publication record includes 138 Scopus-indexed documents, 1,667 citations, and an h-index of 21, reflecting high-impact contributions to journals such as IEEE Access, Applied Sciences, Electronics, and Sensors. He has led and mentored research teams, collaborated internationally, and contributed significantly to the robotics and AI communities. Prof. Kwak’s achievements are recognized through multiple awards, leadership roles, and professional memberships, highlighting his influence on research, education, and technology advancement. His work demonstrates exceptional innovation, academic excellence, and the potential to drive future breakthroughs in AI, robotics, and computational intelligence, making him highly deserving of the Best Researcher Award.

Profiles: Scopus | Google Scholar

Featured Publications

  1. Pedrycz, W., & Kwak, K. C. (2006). Linguistic models as a framework of user-centric system modeling. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 36(2), 187–200. [Citations: 187]

  2. Kwak, K. C., & Pedrycz, W. (2005). Face recognition using a fuzzy fisherface classifier. Pattern Recognition, 38(10), 1717–1732. [Citations: 185]

  3. Kwak, K. C., & Pedrycz, W. (2007). Face recognition using an enhanced independent component analysis approach. IEEE Transactions on Neural Networks, 18(2), 530–541. [Citations: 167]

  4. Byeon, Y. H., Pan, S. B., & Kwak, K. C. (2019). Intelligent deep models based on scalograms of electrocardiogram signals for biometrics. Sensors, 19(4), 935. [Citations: 138]

  5. Kwak, K. C., & Pedrycz, W. (2005). Face recognition: A study in information fusion using fuzzy integral. Pattern Recognition Letters, 26(6), 719–733. [Citations: 112]

 

Jiatao Ding | Robotics and Automation | Best Researcher Award

Dr. Jiatao Ding | Robotics and Automation | Best Researcher Award

Postdoctoral Researcher | University of Trento | Italy

Dr. Jiatao Ding is an accomplished robotics researcher whose work focuses on optimal control, robot learning, and legged robotics, with a strong record of international collaborations and impactful scientific contributions. He obtained his Bachelor’s degree in Mechanical Engineering from Wuhan University in 2014 (Cum Laude), followed by a Doctorate in Mechatronics Engineering from Wuhan University in 2020, during which he also served as a Ph.D. Fellow at the Italian Institute of Technology (2018–2020), gaining valuable international exposure. Professionally, Dr. Ding has held prestigious research appointments including Research Assistant Scientist at the Chinese University of Hong Kong (2020–2022), Postdoctoral Researcher at Delft University of Technology (2022–2025), and currently, Postdoctoral Researcher at the University of Trento, Italy (2025–present). His research interests lie in humanoid and quadruped locomotion, reinforcement learning, and bio-inspired robotic control, where he has actively contributed to major EU H2020 projects such as Inverse, Nature Intelligence, and CogIMon, along with NSFC-funded projects in China. Dr. Ding’s research skills span advanced reinforcement learning, trajectory optimization, hierarchical and model predictive control, and adaptive locomotion strategies, which have enabled breakthroughs in versatile bipedal and quadrupedal robotic systems. His scholarly output is extensive, with publications in flagship robotics venues such as IEEE ICRA, IROS, IEEE Transactions on Robotics, IEEE/ASME Transactions on Mechatronics, and Advanced Robotics, reflecting both quality and global reach. He has served the academic community as a reviewer for leading journals and conferences, session chair at AIM 2025, associate editor at UR 2025, and guest editor for special issues in reputed journals, demonstrating leadership and commitment to advancing robotics research. His awards and honors include invited talks, editorial board appointments, and recognition through collaborative project leadership across Europe and Asia. According to Scopus, Dr. Ding has achieved 262 citations across 241 documents with an h-index of 11, underscoring both productivity and research impact. In conclusion, Dr. Jiatao Ding exemplifies an emerging global leader in robotics whose academic excellence, technical expertise, and dedication to collaborative research position him strongly for future innovations in intelligent robotic systems, making him a deserving candidate for international recognition.

Profile: Google Scholar

Featured Publications

Atanassov, V., Ding, J., Kober, J., Havoutis, I., & Della Santina, C. (2024). Curriculum-based reinforcement learning for quadrupedal jumping: A reference-free design. IEEE Robotics & Automation Magazine, 32(2), 35–48. Citations: 24

Ding, J., Han, L., Ge, L., Liu, Y., & Pang, J. (2022). Robust locomotion exploiting multiple balance strategies: An observer-based cascaded model predictive control approach. IEEE/ASME Transactions on Mechatronics, 27(4), 2089–2097. Citations: 24

Ding, J., Wang, Y., Yang, M., & Xiao, X. (2018). Walking stabilization control for humanoid robots on unknown slope based on walking sequences adjustment. Journal of Intelligent & Robotic Systems, 90(3), 323–338. Citations: 16

Ding, J., Zhou, C., Xin, S., Xiao, X., & Tsagarakis, N. G. (2021). Nonlinear model predictive control for robust bipedal locomotion: Exploring angular momentum and CoM height changes. Advanced Robotics, 35(18), 1079–1097. Citations: 26*

Ding, J., Atanassov, V., Panichi, E., Kober, J., & Della Santina, C. (2024). Robust quadrupedal jumping with impact-aware landing: Exploiting parallel elasticity. IEEE Transactions on Robotics, 40(1), 3212–3231. Citations: 13