Awele Okolie | Artificial Intelligence | Research Excellence Award

Ms. Awele Okolie | Artificial Intelligence | Research Excellence Award

Data Analyst Intern | Wentworth Institute of Technology | United States

Ms. Awele Okolie is an emerging researcher in Machine Learning and Artificial Intelligence, with a strong focus on socially impactful, data-driven research. Her work spans food insecurity prediction, financial fraud detection, healthcare analytics, traffic safety modeling, and explainable AI, demonstrating applied innovation across public policy and safety-critical domains. Her research interests include predictive modeling, explainable machine learning, spatiotemporal analysis, and AI-driven decision systems, supported by skills in data analytics, statistical modeling, and real-world dataset integration. Her scholarly contributions show growing recognition, with Google Scholar metrics of 41 citations, 14 documents, and an h-index of 5, while Scopus citations, documents, and h-index are not provided. Overall, her work reflects a strong commitment to transparent, ethical, and high-impact artificial intelligence research.

 

Citation Metrics (Google Scholar)

41
30
20
10
0

Citations

41

Documents

14

h-index

5

Citations

Documents

h-index

View Google Scholar Profile  View ResearchGate Profile

Featured Publications


Predicting food insecurity across US census tracts: A machine learning analysis using the USDA Food Access Research Atlas

– International Journal of Science and Research Archive, 17(2), 1156-1172, 2025 (Citations: 11)


An Explainable XGBoost Framework for Detecting Fraudulent Financial Transactions

– Journal of Scientific Research and Reports, 31(12), 244-255, 2025 (Citations: 6)


Spatiotemporal analysis and predictive modeling of traffic accidents in Boston: Insights for advancing Vision Zero initiatives

– International Journal of Science and Research Archive, 17(1), 528-543, 2025 (Citations: 6)


Machine learning approaches for predicting 30-day hospital readmissions: Evidence from Massachusetts healthcare data

– World Journal of Advanced Research and Reviews, 28(1), 1-12, 2025 (Citations: 6)

 

Farhan Nisar | Computer Science | Best Researcher Award

Dr. Farhan Nisar | Computer Science | Best Researcher Award

Lecturer | The University of Agriculture | Pakistan

Dr. Farhan Nisar, affiliated with Qurtuba University of Science & Information Technology, Peshawar, Pakistan, is an emerging scholar and researcher in wireless communications, Internet of Things (IoT) networks, and machine learning applications for network optimization. He has made notable contributions to the field through his research on Low Power Wide Area Networks (LPWANs), particularly LoRaWAN, focusing on improving network efficiency, energy consumption, scalability, and reliability. Dr. Nisar’s educational background and professional trajectory have equipped him with a solid foundation in computer science and telecommunications, enabling him to apply advanced machine learning techniques for adaptive network parameter optimization, such as spreading factor adjustment, which enhances IoT network performance in dynamic real-world environments. Professionally, he has been involved in academic research, teaching, and applied projects that bridge theoretical knowledge with practical deployment of intelligent network solutions. His research interests include wireless communication protocols, IoT architectures, network security, data-driven network management, and intelligent device integration, reflecting a multidisciplinary approach that combines computer science, engineering, and data analytics. Dr. Nisar has developed strong research skills in machine learning modeling, algorithm development, network simulation, data analysis, and performance evaluation, contributing to both academic publications and open-access research outputs. His scholarly work has resulted in six published documents, with 18 citations to date and an h-index of 3, as indexed in Scopus, demonstrating early yet impactful contributions to his field. While still in the early stages of his career, he has received recognition for his innovative approaches to network optimization and IoT research, highlighting his potential for future academic and industrial leadership. In conclusion, Dr. Farhan Nisar represents a forward-looking researcher whose interdisciplinary expertise, rigorous methodology, and practical focus on intelligent, self-optimizing networks position him as a valuable contributor to the advancement of next-generation IoT and wireless communication technologies.

Profiles: Scopus

Featured Publications

  1. Nisar, F., & [Co-authors]. (2016). Green cloud computing approaches with respect to energy saving to data centers. Journal of Information, 6(2).

  2. Nisar, F., & [Co-authors]. (2017). Native approach security issue. In Proceedings of the IEEE Comtech Conference.

  3. Nisar, F., & [Co-authors]. (2019). Location-based authentication service in smartphones. In Proceedings of the IEEE Comtech Conference.

  4. Nisar, F., & [Co-authors]. (2019). Apply ARIMA model for data center with respect to different architecture. In Proceedings of the IEEE Raees Conference.

  5. Nisar, F., & [Co-authors]. (2019). Resource utilization in data center by applying ARIMA approach. In INTAP 2019.