Maedeh Azadi Moghadam | Artificial Intelligence | Best Researcher Award

Dr. Maedeh Azadi Moghadam | Artificial Intelligence | Best Researcher Award

Biomedical Engineer | Semnan University | Iran

Dr. Maedeh Azadi Moghadam is an emerging researcher whose work advances the fields of biomedical engineering, neurotechnology, and human–machine interaction, with a particular focus on developing more reliable and human-centered brain–computer interface (BCI) systems. Her research interests span neural signal processing, SSVEP-based BCI optimization, cognitive fatigue detection, biomarker-based performance measurement, and the integration of physiological signals into more adaptive computational models. She is especially interested in understanding how fatigue and cognitive variability influence BCI accuracy, and her work aims to design intelligent systems capable of adjusting in real time to user states, ultimately improving usability for rehabilitation, assistive technologies, and next-generation neuroengineering applications. Dr. Moghadam’s research skills include biosignal analysis, EEG processing, feature extraction, algorithmic modeling, quantitative measurement techniques, and scientific writing, demonstrating her multidisciplinary strengths across engineering and neuroscience. According to Scopus, she has 3 indexed documents, 2 citations, and an h-index of 1, reflecting growing visibility and early academic impact in her domain. Although no formal awards or honors are listed for her in the available Scopus record, her contributions to innovative metrics—such as a continuous fatigue index for SSVEP-based BCI performance—highlight her potential for future recognition in neurotechnology and biomedical measurement science. Her publications demonstrate a commitment to improving the efficiency, accuracy, and adaptability of neuroengineering systems, particularly those intended for people with motor impairments or communication limitations. In conclusion, Dr. Maedeh Azadi Moghadam represents a promising researcher whose interdisciplinary work is helping shape the future of intelligent BCIs, cognitive state monitoring, and biomedical signal-driven technologies. Her expanding scientific contributions, combined with her advancing research skill set, position her for continued impact in the global scientific community and future leadership in neurotechnology innovation.

Profiles: Scopus | Google Scholar | LinkedIn

Featured Publications

Azadi Moghadam, M., & Maleki, A. (2023). Fatigue factors and fatigue indices in SSVEP-based brain–computer interfaces: A systematic review and meta-analysis. Frontiers in Human Neuroscience, 17, 1248474. Citations: 33

Maleki, A., & Azadimoghadam, M. (2022). Fatigue assessment using frequency features in SSVEP-based brain–computer interfaces. Iranian Journal of Biomedical Engineering, 16(3), 229–240.
Citations: 4

Moghadam, M. A., & Maleki, A. (2023). Fatigue detection in SSVEP-based BCIs using biomarkers: A comparative study. 2023 31st International Conference on Electrical Engineering (ICEE), 496–500. Citations: 2

Azadi Moghadam, M., & Maleki, A. (2024). Comparative study of frequency recognition techniques for steady-state visual evoked potentials according to the frequency harmonics and stimulus number. Journal of Biomedical Physics and Engineering. Citations: 1

Moghadam, M. A., & Maleki, A. (2025). A continuous fatigue index based on biomarkers for SSVEP-based brain–computer interfaces. Measurement, 118598.

The Dr. Maedeh Azadi moghadam’s research advances global innovation in neurotechnology by improving the accuracy, stability, and human-centered design of brain–computer interface systems through biomarker-driven fatigue detection and advanced signal analysis. By enhancing the reliability of assistive technologies and cognitive monitoring tools, the nominee’s work contributes meaningful benefits to science, healthcare, and industry, ultimately supporting more accessible, intelligent, and high-performing human–machine interaction solutions for society.

 

Farhan Nisar | Computer Science | Best Researcher Award

Dr. Farhan Nisar | Computer Science | Best Researcher Award

Lecturer | The University of Agriculture | Pakistan

Dr. Farhan Nisar, affiliated with Qurtuba University of Science & Information Technology, Peshawar, Pakistan, is an emerging scholar and researcher in wireless communications, Internet of Things (IoT) networks, and machine learning applications for network optimization. He has made notable contributions to the field through his research on Low Power Wide Area Networks (LPWANs), particularly LoRaWAN, focusing on improving network efficiency, energy consumption, scalability, and reliability. Dr. Nisar’s educational background and professional trajectory have equipped him with a solid foundation in computer science and telecommunications, enabling him to apply advanced machine learning techniques for adaptive network parameter optimization, such as spreading factor adjustment, which enhances IoT network performance in dynamic real-world environments. Professionally, he has been involved in academic research, teaching, and applied projects that bridge theoretical knowledge with practical deployment of intelligent network solutions. His research interests include wireless communication protocols, IoT architectures, network security, data-driven network management, and intelligent device integration, reflecting a multidisciplinary approach that combines computer science, engineering, and data analytics. Dr. Nisar has developed strong research skills in machine learning modeling, algorithm development, network simulation, data analysis, and performance evaluation, contributing to both academic publications and open-access research outputs. His scholarly work has resulted in six published documents, with 18 citations to date and an h-index of 3, as indexed in Scopus, demonstrating early yet impactful contributions to his field. While still in the early stages of his career, he has received recognition for his innovative approaches to network optimization and IoT research, highlighting his potential for future academic and industrial leadership. In conclusion, Dr. Farhan Nisar represents a forward-looking researcher whose interdisciplinary expertise, rigorous methodology, and practical focus on intelligent, self-optimizing networks position him as a valuable contributor to the advancement of next-generation IoT and wireless communication technologies.

Profiles: Scopus

Featured Publications

  1. Nisar, F., & [Co-authors]. (2016). Green cloud computing approaches with respect to energy saving to data centers. Journal of Information, 6(2).

  2. Nisar, F., & [Co-authors]. (2017). Native approach security issue. In Proceedings of the IEEE Comtech Conference.

  3. Nisar, F., & [Co-authors]. (2019). Location-based authentication service in smartphones. In Proceedings of the IEEE Comtech Conference.

  4. Nisar, F., & [Co-authors]. (2019). Apply ARIMA model for data center with respect to different architecture. In Proceedings of the IEEE Raees Conference.

  5. Nisar, F., & [Co-authors]. (2019). Resource utilization in data center by applying ARIMA approach. In INTAP 2019.